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A B S T R A C T

The investigation of targeted drug delivery systems as a way to improve therapeutic efficacy while
minimizing adverse effects is a result of the development of novel cancer treatment strategies. This subject
explores the exciting field of aptamer-based targeted drug delivery systems for the treatment of cancer.
Short single-stranded DNA or RNA molecules called aptamers have a remarkable capacity to bind to
particular target molecules with high specificity and affinity. Aptamers have drawn attention as excellent
possibilities for creating targeted drug delivery systems by taking use of their special characteristic. The
applications, choice, and modification of aptamers to precisely identify cancer-associated biomarkers, such
as receptors overexpressed on cancer cells, are covered in detail in this topic. Additionally, it emphasizes
various techniques for aptamer-drug conjugation optimization which ensure effective carrier delivery and
regulated drug release inside the tumor microenvironment. It is investigated if aptamer-based systems have
the ability to overcome problems such drug resistance, heterogeneity, and insufficient drug penetration
within solid tumors.
In conclusion, this article illuminates how aptamer-based targeted drug delivery systems have transformed
the world of cancer treatment. It advances knowledge of these systems and their potential to transform
cancer treatment by providing insights into design principles, delivery systems, and therapeutic results.
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1. Introduction

Cancer is the most prevalent life-threatening disease that
is characterised by uncontrolled growth and spread of
abnormal cell. Metastasis is the stage where the cancer cells
grows and lead to death. Cancer is caused by many external
factors which includes chemicals, radiation, tobacco, and
infectious organisms as well as some internal factors which
includes hormones, immune conditions, inherited mutations
and random mutations.1 The abnormal cell growth occurs
due to change in the DNA structure which are called
as genes. A change in DNA can help the gene to grow
unwanted cell growth. And other reason includes for the
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abnormal cell growth is the environmental factors and
genetic disorders. Most common cancers are caused due
to mutation in somatic cells. Cancer is directed by two
classes of genes which include oncogenes and tumour
suppressor genes (TSGs) and each providing an important
role in normal cells. In cancer, activating mutations
of proto-oncogenes (mutated versions of normal cellular
genes) can be caused uncontrolled cell division, which
enhanced survival even after anti-cancer treatment and
dissemination.2 For this situation the treatment includes
surgery, radiation, and immunotherapy medication.3

Cancer is still leading cause of death despite advances in
major treatments for cancer such as surgery, radiotherapy,
chemotherapy and immunotherapy.4–6 Though the first
three treatments directly target the cancer cell but
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immunotherapy attacks the tumor through host immune
system.7,8 Although chemotherapy and radiotherapy are
effective treatments, their side effects not only have a long-
term negative impact on the patients’ quality of life but also
raise mortality rates and reduce the options for additional
therapy.9

Cancer chemotherapy is a recognized treatment approach
that can be used alone or in conjunction with surgery
and radiation therapy to cure cancer.10 Chemotherapy
is a successful method of treating cancer, but it faces
significant challenges due to unfavourable side effects and
the emergence of drug resistance that leads to multi-
drug resistance (MDR).11 The lack of selectivity for
tumor cells over normal cells, which results in insufficient
drug concentrations in tumors, systemic toxicity, and
the emergence of drug-resistant tumor cells, limits the
effectiveness of this approach.12

The goal of radiotherapy is to spare healthy tissues
while sculpting the ideal isodose on the tumor volume.
Patient recovery, organ preservation, and cost effectiveness
are all three advantages. Proton and particle beam radiation,
which is frequently used in conjunction with surgery
and other medical interventions in a multidisciplinary and
individualized approach to cancer treatment, has recently
been added to these advancements.13 Radiation sensitivity
in cells ranges widely, with cancer stem cells typically
being radio resistant.14 Radiation therapy-related toxicities
have gained attention due to the improved clinical results
of cancer treatment. To further increase the radiation
treatment’s therapeutic ratio, radiation is also given in
conjunction with molecular targeted therapy.15–19

Cancer immunotherapy is a cutting-edge method
of treating malignancies nowadays. Immunotherapy has
been shown in numerous tests and clinical research
to offer unmatched benefits over conventional anti-
tumor therapy, which can extend progression-free survival
(PFS) and overall survival (OS). Immunotherapy will
always have an edge over other treatments since the
immune system has the capability to remember and
the ability to identify and eliminate tumor variations as
they arise.20 In contrast to traditional cancer therapies,
immunotherapy not only eliminates primary tumors but
also stops metastasis and recurrence. However, because
immune cells are frequently not adequately supplied
cancer antigens, current cancer immunotherapies offer
modest therapeutic benefits. Solid tumors also circumvent
anti-cancer immunity, unlike lymphoma, by developing
an immune-suppressive tumor microenvironment (TME).
Nanoparticles made of biomaterials are one strategy for
bypassing these restrictions of cancer immunotherapy.21

Implementing existing and potential solutions, such as the
development of more targeted cancer immunotherapies,
personalized treatment with cancer immunotherapy drug
combinations, cancer immunoprevention strategies, and

other significant innovations, will probably enable us to
overcome current challenges.22–27

Due to its sensitivity towards cancer cells while
minimizing harm to off-target cells, targeted therapy has
recently gained prominence. The goal of targeted therapy is
to deliver medications to specific genes or proteins that are
unique to cancer cells or the tissue milieu that supports the
formation of cancer. These substances may be medications
that prevent cancer cell proliferation, encourage cell cycle
regulation, or trigger apoptosis or autophagy. In targeted
therapy, monoclonal antibodies or orally administered,
tiny medicines are used.11,28 Recent developments have
produced integrated nanodevices for early cancer detection
and screening, multifunctional nanoparticle probes for
molecular and cellular imaging, and nanoparticle medicines
for targeted therapy. These innovations have created
exciting new possibilities for personalized oncology, in
which cancer detection, diagnosis, and treatment are
tailored to each patient’s molecular profile, as well as
predictive oncology, in which genetic and molecular data
are used to forecast tumor onset, progression, and clinical
outcome.29 For instance, when doxorubicin, a routinely
used anticancer medicine, is non-specifically absorbed by
non-targeted tissues, such as those of the cardiovascular
system, it can result in congestive heart failure and dilated
cardiomyopathy. The dosage and methods of administration
are directly inversely correlated with the severity of
complications brought on by these antineoplastic.30 These
drugs must be administered specifically to targeted tumors
at a low dose in order to eliminate these negative effects.
For the treatment of cancer, several attempts have been
undertaken to create targeted drug delivery systems.31,32

A new class of targeting-capable biomolecules, known
as aptamers, developed with the introduction of the
systemic evolution of ligands by exponential enrichment
processes.33,34

2. Aptamers

According to Ellington and Szostak, aptamers were
discovered in 1990 and are a large group of randomly
sequenced RNA molecules that are specifically attached to
chemical dyes.35 A single-stranded DNA or RNA structure
called an aptamer fold into a special tertiary structure
for interacting with particular targets; the complimentary
forms of aptamers and targets enable binding. Aptamers
have a number of advantages over other ligands, including
small size, ease of synthesis, great chemical stability, full
engineering, and minimal immunogenicity.36 Aptamers are
appealing for targeted therapy because of these qualities.
A number of aptamers have been tested thus far and have
shown significant potential in a variety of applications,
including diagnostics, prognostics, and therapies for human
virus and cancer diseases.37 The advantages of aptamers
are comparable to those of antibodies in that they can bind
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to particular targets with a high affinity. Because of their
great selectivity to targets, aptamers have slowly emerged
as one of the research hotspots in the area of disease-
targeted therapy. Because of their non-immunogenic traits,
high specificity, and stability, aptamers are thought to be
promising therapeutic agents. Aptamers can pair with the
nano-carrier or directly interact with the medicines to
decrease systemic toxicity.38–40 Aptamers are referred to
as "chemical antibodies" due to their low cost and ease of
modification.41 Aptamers, which are single-stranded DNA
or RNA oligonucleotides that are very short and can imitate
an antibody’s antigen specificity, have been proven to
have extremely high specificity for drug delivery in cancer
chemotherapy.42–45 Additionally, they can easily be created
or chemically developed to either tighten or loosen their
affinity for a specific target molecule, like a cancer antigen.
In this regard, SELEX (systemic evolution of ligands by
exponential enrichment) has been created and utilized to
evolve and select a specific DNA or RNA aptamer that has
a desired affinity for an interest cancer antigen.46 In this
method, a variety of medicinal and sensing aptamers have
been found.47,48

2.1. Types of aptamers

RNA aptamers and DNA aptamers are the two main types
of aptamers. The majority of research in the early stages
of aptamer development was devoted to RNA aptamers.
Because of their distinct tertiary structure and single-
stranded nature, RNA aptamers may bind to targets more
firmly and precisely. Drugs and other ligands can easily
enter cells and be delivered to their targets because an RNA
aptamer with a single strand structure is often smaller than a
DNA aptamer. Numerous studies show that RNA aptamers
are better able to bind to particular targets.49–51 There
are some more aptamers includes protein aptamers, small
molecule aptamers, nucleic acid aptamers, cell-specific
aptamers, therapeutic aptamers.

2.2. Sources of aptamer (SELEX

The first T4 DNA polymerase binding affinity was
discovered by Tuerk and Gold, who arbitrarily selected two
RNA sequences from an RNA library. The technique is
known as Systematic Evolution of Ligands by Exponential
Enrichment (SELEX).52 Since then, in vitro aptamer
selection has been done frequently using the SELEX
approach. The general SELEX procedure is as shown in
Fig. 1.53–55 Traditional SELEX primarily consists of three
procedures: Choosing ligand sequences that bind to the
target; separating aptamers from non-aptamers using an
affinity technique; and amplifying nodule-suitable bodies.

A realistic way to select aptamers against tiny
compounds, proteins, bacteria, viruses, cell lines, and
even complete cells is through the use of SELEX.57 In

recent years, a number of screening techniques have been
developed as a result of the rapid growth of SELEX,
including Conventional SELEX and SELEX for complex
targets, Affinity chromatography SELEX, SELEX for
tissue slides, SELEX for magnetic beads, SELEX for
capillary electrophoresis, SELEX for genomics, MSD-
SELEX for monoclonal surface display, and Cell-SELEX.
SELEX targets expressed on cell surfaces (TECS-SELEX),
fluorescence-activated cell sorting (FACS-SELEX), and 3D
cell sorting (Hybrid-SELEX), among others, have also been
created using Cell-SELEX.

3. Applications of Aptamer

The local concentration and efficacy of cancer treatments
have been improved by the use of aptamers tailored
to cancer biomarkers. Due to its numerous advantages,
which include stability for long-term storage, simplicity
of synthesis and use, and minimal immunogenicity and
resistance, aptamers have recently gained popularity as a
tool for treating and identifying specific malignancies.58

Trastuzumab and pertuzumab are presently used to
treat breast tumors that express the human epidermal
growth factor receptor 2 (HER2).59,60 Unfortunately, the
major downside of this treatment is the development of
resistance.61 Aptamer has been emphasized as a desirable
substitute in regard to this.

3.1. Applications for diagnostics based on aptamers

Aptamers are showing increasing promise as a cancer
diagnostic and imaging tool. Aptamer-nanoparticle (Apt-
NP) conjugates are one of the most useful systems for
cancer diagnostics, as is well known. These conjugates
enable the detection of cancer cells in complicated bodily
fluids like blood and serum. The nuclease activity of
cancer cells is shielded by nanoparticles when aptamers
are used to identify them with great sensitivity and
selectivity (Figure 1). According to Borghei’s research, AS
1411 aptamer nucleotides have been conjugated with gold
nanoparticles (AuNP) and colorimetric analysis has been
devised to more effectively detect MCF-7 breast cancer
cells. Aptamers are trapped because of their affinity for
the nucleolin receptors on cancer cells. The AS 1411
aptamer was taken out of the mixture because it adhered
to breast cancer cells.62 AS1411, also referred to as an
anti-nucleolin aptamer, is a stable, 26-base guanine-rich
oligonucleotide that binds to the target nucleolin receptors
that are overexpressed on cancer cells.63,64 Since normal
cells lack or have less nucleolin receptors than cancer cells,
nucleolin may be used as a tumor biomarker to distinguish
between the two types of cells.63 As a result, a particular
interaction between AS1411 and nucleolin may someday
make it possible to use therapeutic drugs to target cancer
cells very precisely and successfully.65,66
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Figure 1: shows the general procedure of traditional SELEX and how it is used in breast cancer. The technique has been used extensively
for in vitroaptamer selection. To identify tumor cells and treat breast cancer, aptamers are coupled with imaging labels or nanoparticles.
To screen breast cancer aptamers, proteins-based SELEX and cells-based SELEX, two separate types of SELEX, are often used. 56

A number of biomarkers have also been found using
aptamers, mainly because they can be chosen without
being aware of their chemical identification beforehand.
The biotinylated aptamer sgc8 was used to identify PTK7
in a variety of cancer cells. PTK7, a pseudokinase devoid
of tyrosine kinase activity, requires further study. PTK7
was found to be expressed, albeit in various ways, in both
many healthy cells and tumors thanks to aptamers. PTK7
expression is upregulated throughout the development of
cancer, pointing to its potential value as a diagnostic or
therapeutic marker.67

Biomarkers can be created from the overexpression
of surface proteins on cancer cells in order to detect
some diseases early. In a study published in 2020, Raja
Chinnappan et al. discovered that anti-VCAM-1 and anti-
IL4R DNA aptamers were overexpressed on Vascular Cell
Adhesive Molecule-1 in mice with the 4T1 tumor. They
could serve as therapeutic indicators in addition to being
diagnostic ones. The vitality and luciferase activity of 4T1-
Luc2 cancer cells can be determined by measuring the
absorbance and fluorescence of anti-VCAM-1 ssDNA or
anti-IL4R RNA aptamers. The bioluminescence experiment
and cell viability confirmed that these particular aptamers
induced apoptosis in 4T1-Luc2 cells. To summarize, 4T1-
Luc2 tumor-bearing mice were used to detect breast cancer
by overexpressing the biomarkers anti-VCAM1 and anti-
IL4R.68

3.2. Therapy based on aptamers

Chemotherapy is still the most popular cancer treatment
option as of right now. However, chemotherapy is always
accompanied by a number of negative effects. Most
medications kill both cancerous and healthy cells, thus they
are not selective. For instance, trastuzumab and pertuzumab
can be used to treat breast tumors that have HER2
positive.59,60 Unfortunately, resistance to this treatment is
one of its biggest drawbacks.61 However, this restriction
may be overcome and the efficacy and specificity of
chemotherapeutic medicines may be enhanced by focusing
on their distribution. Given this, aptamer has become a
tempting alternative.
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Therapeutic aptamers for targeted drug delivery. It is
possible to divide aptamer-mediated active tumor targeted
therapy into six groups and ten types, including aptamers
as drugs, bi-specific aptamer systems, aptamer-small
interfering RNA (siRNA) conjugates, aptamer-locked
nucleic acid (LNA) conjugates, aptamer-anti-microRNAs
(miRNAs) conjugates, aptamer-drug conjugates
(ApDCs), aptamer-drug-nanoparticle conjugates, aptamer-
peptide conjugates, aptamer-photodynamic treatment
(PDT) agent conjugates, and aptamer-photothermal therapy
(PTT) agent conjugates.

3.3. Therapeutic aptamers for targeted delivery of
drugs

Aptamers are great choices for molecular probes since
this special approach has high sensitivity and specificity
to a particular target. Aptamers were shown by Sullenger
et al. to be useful as therapeutic agents in 1990.69 The
FDA has authorized the use of pegaptanib (Macugen®), an
aptamer that blocks VEGF165, to treat age-related macular
degeneration.70 Macugen is necessary for both permeability
and angiogenesis. The use of various aptamers for particular
diseases has been acknowledged since the US Food
and Drug Administration approved the Macugen aptamer
specific for vascular endothelial growth factor in 2004 for
the treatment of age-related macular degeneration.71 For
instance, the medication ARC1779 works to inhibit the
purpura-causing activated von Willebrand factor.72

Additionally, scientists are creating aptamers that
specifically interact with cancer cells in order to treat the
disease. Similar to this, aptamers can be created to cure
cancer by altering the immune system and thus blocking
cancer cell proliferation. The micro environment and tumor
cells both express the platelet-derived growth factor receptor
(PDGFR), which is significantly expressed in invasive
TNBC. In 2020, Simona et al. successfully suppressed
tumor growth and metastasis in mouse models of TNBC
by giving them a very effective PDGFR aptamer. As a
result, a novel treatment that combines PDGFR aptamer and
anti-programmed cell death-ligand 1 monoclonal antibodies
(mAbs) was studied in TNBC. The aptamer potentiates
the anti-proliferative effects of anti-PD-L1 mAb on TNBC
cells based on its cross-reactivity between humans and
animals.Additionally, when attached to active human and
mouse lymphocytes, the aptamer increases the cytotoxic
activity of lymphocytes against tumor cells. The aptamer’s
major advantage is that it improves the efficiency of
tumor development and lung metastases that are hindered
by antibodies. The medication also inhibits the Akt and
ERK1/2 signalling pathways, enhancing intratumoral CD8
+ T cells and reducing FOXP3 + Tregs.73

4. ApDCs, or aptamer-drug conjugates

Chemotherapy is one of the cancer therapies that is most
frequently utilized in the general population. Toxicity
of healthy tissues is a usual restriction in traditional
chemotherapy, as are side effects that reduce the efficacy
of the treatment. When drugs are exposed less, they are
less likely to be absorbed into healthy tissues; as a result,
we anticipate fewer adverse effects and more therapeutic
efficacy. Using ApDCs, which selectively carry medications
to damaged tissues and cells and ignore healthy cells, this
objective can be accomplished.67,74

The usage of certain ligands in tumour-targeted therapy
has increased. Aptamers can interact with a variety of
targets with great affinity, specificity, and selectivity,
including proteins, small compounds, viruses, bacteria, and
live cells.75,76 Due to the general stability and structural
reversibility of aptamers, a multitude of ApDCs designs
are possible. Similar to antibody-drug conjugates (ADCs),
ApDCs contain three molecules: an aptamer, a linker, and a
drug from the warhead. Most aptamers deliver therapeutic
agents that alter the function of disease biomarkers in
addition to serving as recognition ligands for disease
locations.77 The most crucial of the three characteristics
of targeted drug delivery is the specificity of the target
molecule and the ligand.78

Due to its compactness, biocompatibility, biosafety, and
editability, a DNA tetrahedron has recently been claimed to
be a novel nanomedicine and a viable drug vector.79–81 The
DNA tetrahedron can be altered or loaded with different
materials, such as aptamers and anticancer drugs.82,83 As
one example, the aptamer AS1411 has the targeting and
anticancer capabilities of G-rich DNA oligonucleotides.84

The nucleolin protein, which is primarily present on the
surface of tumor cells, can bond with this protein due to
its G-quadruplex structure.85–87 Nucleolin is thought to be
dysregulated in cancer cells because it is overexpressed on
their membranes, which stimulates cell proliferation. As a
DNA-based delivery system, Zhan et al. modified the DNA
tetrahedron (T-AS1411) with a DNA aptamer (AS1411) that
could attach to nucleolin for its cancer cell selectivity.

Doxorubicin (Dox), an effective chemotherapeutic
medication, has demonstrated considerable promise in the
treatment of various cancer types. However, its usage in
clinical studies was constrained by a serious cardiotoxin
issue and drug resistance.88

Paclitaxel (PTX), an active chemotherapeutic drug, can
be used to decrease cancerous tumors in the breast, lung, and
ovary. PTX interferes with microtubule processing, which
inhibits cell division.89–92 Despite Paclitaxel’s success in
treating cancer in people, there are a number of drawbacks.
It exhibits multiple drug resistance, is toxic, rapidly
clears, is non-specific, is insoluble in water, and is not
physiologically accessible.91–94
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5. Conclusion

Aptamer-based targeted drug administration provides an
exciting and cutting-edge method in the realm of medication
delivery and individualized healthcare. The capacity of
aptamers to precisely bind to target molecules sets them
apart from other drug delivery methods in a number of
ways. They offer a high level of selectivity, decreasing side
effects that are not intended and lowering the possibility of
systemic toxicity.

Aptamers are adaptable instruments for precision drug
administration because they may be easily changed to
improve their stability and pharmacokinetic characteristics.
Their prospective uses cover a wide spectrum of illnesses,
such as cancer, infectious infections, and neurological
problems.

We foresee the creation of more complex aptamer-
based medication delivery systems that are adapted to each
patient’s unique requirements as this field of study develops.
These devices could completely alter how we administer
drugs, optimizing therapeutic results while reducing side
effects.

It’s vital to recognize that there are still obstacles
to be solved, including the need to optimize aptamer
characteristics, increase production scale, and deal with
regulatory approval procedures. Despite this, the quick
development of aptamer science and technology points to
a promising future for aptamer-based targeted drug delivery
as a useful addition to the toolkit of treatments available to
healthcare professionals, providing hope for future years of
more successful and individualized medical interventions.
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